Data Needs Analysis

Magoffin County
Bert T. Combs Mountain Parkway (KY 9009)

Item No. 10-140.00

Prepared By:
Kentucky Transportation Cabinet (KYTC)
Division of Planning \& KYTC District 10

October 5, 2010

Table of Contents

I. INTRODUCTION ... 1
A. Study Purpose.. 1
B. Location .. 1
II. PROJECT PURPOSE AND NEED .. 2
A. Legislation.. 2
B. Project Status ... 3
C. System Linkage ... 3
D. Modal Interrelationships .. 5
E. Social Demands \& Economic Development .. 5
F. Transportation Demand... 5
G. Capacity ... 5
H. Safety ... 6
I. Roadway Deficiencies ... 7
a. Mainline Geometrics.. 7
b. Bridges .. 8
c. Ramps... 8
d. Intersections ... 10
e. Drainage... 11
III. PRELIMINARY ENVIRONMENTAL OVERVIEW.. 11
A. Air Quality... 11
B. Archaeology.. 12
C. Threatened and Endangered Species ... 12
D. Hazardous Materials ... 12
E. Historic Resources .. 12
F. Permitting... 12
G. Noise ... 12
H. Socioeconomic... 12
I. Section 4(f) Resources .. 13
J. Section 6(f) Resources .. 13
IV. PRELIMINARY PROJECT INFORMATION 13
A. Existing Conditions/Roadway Data 13
B. Utilities. 15
C. Agency Coordination 16
V. PROJECT PURPOSE AND NEED STATEMENT 16
VI. POSSIBLE ALTERNATIVES 17
A. Alternate \#1 - No Build 17
B. Alternate \#2 - Modify Existing Cloverleaf Exit Ramp 17
C. Alternate \#3 - Construct Westbound Off-Ramp on North Side of KY 9009 18
D. Alternate \#4 - Replace Ramps North of KY 9009 with a Tight Urban Diamond 19
E. Alternate \#5 - Widen the overpass Bridge to Accommodate Westbound Exit Lane 20
F. Alternate \#6 - Extend US 460 Left Turn(\& Thru) Lane/Restripe TWLTL 21
VII. SUMMARY 22

LIST OF FIGURES

Figure 1 Project Location Map 2
Figure 2 System Linkage Map 4
Figure 3 Collision Locations 6
Figure 4 Passing Lanes 7
Figure 5 Bridge Over Burning Fork 8
Figure 6 Entrance to Cloverleaf Exit Ramp onto KY 7 9
Figure 7 Cloverleaf Exit Ramp onto KY 7. 9
Figure 8 US 460 Site Distance 10
Figure 9 US 460 Intersection. 11
Figure 10 Utility Locations 16
Figure 11 Alternate \#2 18
Figure 12 Alternate \#3 19
Figure 13 Alternate \#4 20
Figure 14 Alternate \#5 21
Figure 15 Alternate \#6 22

Table of Contents(Continued)

LIST OF TABLES

Table 1 Traffic Forecast... 5
Table 2 Existing Conditions and Data Summary ... 14

LIST OF APPENDICES
Appendix A Exhibits
Appendix B UPL Project Information Forms
Appendix C Traffic Forecast Report
Appendix D Collision Data
Appendix E KYTC Common Geometric Practice Guidelines
Appendix F Existing Roadway Plans
Appendix G Structure Inventory and Appraisal Sheets
Appendix H FIRM Map(s) of the Study Area
Appendix I Photographs
Appendix J Project Team Meeting Minutes

I. INTRODUCTION

This study is a Data Needs Analysis (DNA) of a roadway project on the Mountain Parkway in Magoffin County, Item Number 10-140.00.

A. Study Purpose

The purpose of the DNA is to address the nine elements of Purpose and Need as defined by NEPA in order to develop a draft Purpose and Need Statement for the project. This study will also provide a more defined project scope, possible alternatives, planninglevel cost estimates for the alternatives, an identification of potential environmental impacts, and other information that will be of assistance in the Project Development Phase of this project.

B. Location

This project is located on the Bert T. Combs Mountain Parkway (KY 9009) with project limits extending from the bridge over Licking River (MP 74.5) to the end of the Mountain Parkway (MP 75.6) in Salyersville (See Figure 1 and Exhibit 1 in Appendix A). The project includes a partial cloverleaf interchange with KY 7, an intersection with US 460 and three structures. A topographic map of the study area, Exhibit 2, can also be viewed in Appendix A.

Figure 1: Project Location Map

II. PROJECT PURPOSE AND NEED

A. Legislation

This project was entered into the Six-Year Highway Plan (SYP) in 2006. The design phase funding of $\$ 600,000$ (SP funds) was authorized in December 2006. The following is a description of the project as it is listed in the 2010 General Assembly's Enacted Roadway Plan.

- Item \#10-140.00, Magoffin County

Phase		Fund	$\frac{Y}{\text { Year }}$	
R:		Sptimate	2011	$\$ 560,000$
U:	SPB	2011	$\$ 330,000$	
C:	SPP	2012	$\$ 15,750,000$	

MOUNTAIN PARKWAY WIDENING AND SAFETY IMPROVEMENTS FROM MP 74.5, LICKING RIVER BRIDGE, TO MP 75.6, KY-3048/US-460.

B. Project Status

Preliminary Design Plans were completed in 1999 for a new route to connect the Mountain Parkway with KY 114 south of the existing US 460/KY 114 route which would completely bypass the section of roadway in this project. Preliminary Design Plans were completed in 2004 for a new route which utilizes the existing KY 7 Ramps, but bypasses most of the section of roadway in this project. A 2010 programming study for improving the Mountain Parkway from Campton to Prestonsburg, currently in draft form, confirmed that a through Salyersville 4-lane section is an option. All of these proposed alignments can be viewed in Exhibit 3 in Appendix A.

The KYTC District 10 office has received public opposition to constructing a new alignment away from the developed section of US 460 that runs through Salyersville. They have also received opposition to routing the traffic through town. A final decision has not yet been made on whether or not to construct a new route south of Salyersville that would bypass the developed section of US 460 . This segment of roadway was ranked first priority by KYTC Districts 10 and 12 as part of the 2010 Mountain Parkway Study.

Design funds for this project were authorized in 2006. A traffic forecast was completed in July 2010.

There is a project listed on the Unscheduled Project List (UPL) to widen the Mountain Parkway to four lanes from 0.3 miles east of the KY 134/Johnson Creek Bridge (MP 63.084) to KY 7 (MP 74.772). The Project Information Form (PIF) for this project can be viewed in Appendix B.

C. System Linkage

Mountain Parkway is a major, two-lane regional connection from l-64, soon to be 6lanes, to US 23, a 4-lane roadway. US 23 is a North-South connection from the Great Lakes to Florida. The Mountain Parkway provides a connection from Central Kentucky to the many communities and rural areas of Southeastern Kentucky (See Figure 2 and Exhibit 4 in Appendix A). With the recent completion of widening US 119 to four lanes
in West Virginia, the Mountain Parkway is becoming a greater link to Virginia and West Virginia.

Figure 2: System Linkage Map

This segment of Mountain Parkway has the following roadway classifications:

- Functional Classification - Rural Principal Arterial
- State System - State Primary
- On the National Truck Network
- Truck Weight Classification - AAA
- On the Appalachian Development Highway System
- Not a designated Bike Route
- Limited Access Facility

D. Modal Interrelationships

There is no public transit on this route. CSX removed its railing a few years ago from this area. The closest active rail line is several miles southeast of the project site. This Mountain Parkway is used for coal haul and freight transport.

E. Social Demands \& Economic Development

The Mountain Parkway is used to access shopping centers, higher education facilities, and hospitals in Central Kentucky and West Virginia. It is also used locally as a route to the schools in Salyersville. According to KYTC's Highway Information System (HIS) database, there were over 1.5 million tons of coal hauled on this route in 2009. There is development potential in communities located east of the project site in the communities of Paintsville and Pikeville.

F. Transportation Demand

A traffic forecast was recently completed for this project and can be viewed in detail in Appendix C. Table 1 summarizes the information provided. The section from MP 74.5 to MP 74.772 is from the beginning of the project to the KY 7 interchange. The section from MP 74.772 to MP 75.6 is from the KY 7 interchange to the end of the Mountain Parkway. A 1.74% growth rate was applied to determine the 2032 traffic volumes.

Table 1: Traffic Forecast

	MP 74.5 to $\mathbf{7 4 . 7 7 2}$	MP 74.772 to MP 75.6
2010 ADT	6,000	8,100
2032 ADT	8,800	11,900
2032 DHV	820	1,080
2010 Truck\%	20.80%	20.8
2032 Truck\%	26.00%	26
20 YR ESALS	$9,800,000$	$14,000,000$

Directional traffic counts were also performed at the KY 7 interchange and the intersection with US 460. Details can be viewed in the Traffic Forecast Report in Appendix C.

G. Capacity

According to the Division of Planning's Adequacy Ratings Data, the current Vehicle/Service Flow (V/SF) is 0.33 . It should also be noted that passing lanes exist on much of this segment of the parkway. Based on the traffic forecast, the current capacity of the existing roadway will be adequate for the near future. However, future economic
and social development demands may lead to an increase in traffic that would require additional capacity.

H. Safety

Collision data was obtained from the Kentucky State Police database for a three year period from June 1, 2007 to May 31, 2010. There were 21 reported collisions in the project area during this three year period. Fourteen of the collisions were located at the intersection with US 460 and were rear end collisions. Two were located on the ramp with KY 7. No night/day or weather pattern could be determined. No fatalities occurred on this segment of the Mountain Parkway during the three year analysis period. While there were only a couple of collisions that occurred on the ramps during the analysis period, KYTC District 10 has received several complaints about the safety of the ramps.

Figure 3: Collision Locations

A 0.10 Mile Spot Critical Rate Factor (CRF) was calculated near the intersection of the Mountain Parkway and US 460. The 0.10 Mile Spot CRF on KY 7 and US 460 was 0.49 and 0.69 , respectively. However, 14 collisions of the same type in the same area of the roadway in a 3 year period indicates that there may be a problem with the US 460 intersection that needs to be examined. More detailed collision data can be viewed in Appendix D.

I. Roadway Deficiencies

a. Mainline Geometrics

The roadway currently has 12 - ft lanes, 10 -ft shoulders, a maximum grade of 5.5%, a posted speed limit of 55 MPH, and an Adequacy Rating Percentile of 56.19. KYTC's Common Geometric Practices for Rural Arterials recommends $12-\mathrm{ft}$ lanes and $8-\mathrm{ft}$ shoulders for a 60 MPH Design Speed and a maximum grade of 6% for mountainous terrain (see Appendix E). The roadway currently meets these recommendations. The curve at the end of the project has a radius of 954.83 feet which is slightly less than the recommended minimum radius of 1065 feet in the KYTC's Common Geometric Practices for Rural Arterials. Existing roadway plans can be viewed in Appendix F. Mountain Parkway also accommodates passing lanes along part of the roadway (see Figure 4).

Figure 4: Passing Lanes
b. Bridges

There are three bridges located on this project. None are rated structurally deficient, but they are functionally obsolete with substandard bridge rails. The Structure Inventory and Appraisal Sheets for each bridge can be viewed in Appendix G. The bridges over the Licking River and over Burning Fork are not wide enough ($29.9-\mathrm{ft}$ curb to curb) to accommodate the recommended 8 -ft shoulders. The bridge over Burning Fork can be seen in Figure 5 below.

Figure 5: Bridge over Burning Fork
c. Ramps

The radius of the cloverleaf ramp in the northwest quadrant of the Mountain Parkway/KY 7 Interchange could not be determined from the As-Built plans available, but it measures at approximately 75 feet. The radius of the cloverleaf in the southwest quadrant measures approximately 125 feet. A minimum design speed of 30 MPH and a minimum radius of 230 feet are recommended by KYTC's Division of Highway Design for a cloverleaf ramp.

The interchange also does not meet minimum recommendations for acceleration and deceleration lengths at the ramp terminals. According to AASHTO's A Policy on Geometric Design of Highways and Streets, the recommended acceleration length is approximately 800 feet, and the recommended deceleration length is approximately 405 feet. The cloverleaf ramp that exits onto KY 7 has almost no deceleration lane (See Figures 6 and 7). The cloverleaf ramp that is an entrance ramp to the Mountain Parkway has a dedicated lane which allows it to meet recommendations
for acceleration lengths. The other two ramps do not meet recommendations for acceleration and deceleration lengths.

Figure 6: Entrance to Cloverleaf Exit Ramp onto KY 7

Figure 7: Cloverleaf Exit Ramp onto KY 7

d. Intersections

Due to the crash history on the US 460 leg of the intersection with KY 9009, the adequacy of the geometrics in this area was analyzed. There is a vertical curve located on US 460 with its crest located approximately 480 feet prior to the intersection. The stopping sight distance was calculated from roadway plans to be 436 feet which meets a 50 MPH Design Criteria. The road is currently signed at 35 MPH. The vertical sight distance of the vertical curve did not appear to be an issue. Below, in Figure 8, is a picture taken near the crest of the vertical curve.

Figure 8: US 460 Site Distance

The lack of storage for vehicles turning left was observed during a site visit at this intersection. The storage length of the Left-Turn/Thru Lane on US 460 is not long enough to accommodate the left turning vehicles. According to the Traffic Forecast Report (see Appendix C), the left turning volume at this location is 4600 vehicles per day (vpd). The thru traffic is only 10 vpd. The design hour turning volume can be calculated to be approximately 500 vehicles per hour (vph). According to the Nomograph for Storage for a Single Turn Lane at a Signalized Intersection provided in Chapter 9 of the KYTC Highway Design Manual , the length of the turning lane should be a minimum of approximately 525 feet. The storage currently provided is approximately 100 feet (See Figure 9).

Figure 9: US 460 Intersection

The Mountain Parkway leg of the intersection was also analyzed. Given the turning volumes described in the Traffic Forecast Report, the existing storage length of approximately 265 feet and the taper rate of approximately 18:1 were found to be adequate for the left-turn lane on the Mountain Parkway (KY 9009) at the KY 9009/US 460 Intersection.
e. Drainage

Flooding does not appear to be an issue in this area. The Flood Insurance Rate Maps (FIRMs) indicate that there is a flood zone just east of the bridge over the Burning Fork with a Base Flood Elevation of around 860 feet. The elevation of the roadway in this area generally stays above the Base Flood Elevation. The FIRM Maps of the project site can be viewed in Appendix H.

III. PRELIMINARY ENVIRONMENTAL OVERVIEW

A. Air Quality

Magoffin County is in attainment for all monitored air pollutants.

B. Archaeology

An archaeology Phase I Survey will need to be completed in order to rule out any impacts to archaeological sites. Archaeological sites could potentially be located along the Licking River and along Burning Fork.

C. Threatened and Endangered Species

The USFWS has identified the known and potential presence of a threatened and endangered species in Magoffin County. Potential habitat has been observed for Indiana bat, Myotis sodalis, in the forested corridor of the project area. A biological assessment or mitigation measures should address these potential impacts prior to construction.

D. Hazardous Materials

No properties appear to have a high probability of hazardous materials. However, due to the uncertainty of past land use, a more detailed field survey, particularly around the KY 7 intersection, should be conducted prior to final determination.

E. Historic Resources

Few structures were noted along the project corridor. Any structures at least 50 years of age meet the first screening requirement for the National Register of Historic Places. Possible cultural resource impacts will need to be explored further.

F. Permitting

Magoffin County does not have any exceptional waters or outstanding resource waters. Nonetheless, any impacts to waters of the United States will need a USACE 404 permit and a DOW 401 permit. Additionally, a surface water KYR 10 permit will be needed for construction disturbance.

G. Noise

Noise mitigation may need to be considered if additional lanes are added; however, similar projects along the Mountain Parkway and within this vicinity have not required noise walls or any other mitigation.

H. Socioeconomic

Socioeconomic impacts are not anticipated.

I. Section 4(f) Resources

If residences or structures located nearby are ruled as eligible for the National Register of Historic Places, they could be afforded protection under Section 4(f). KYTC has options to mitigate and avoid impacts to section $4(\mathrm{f})$ resources including a programmatic agreement for mitigating historic bridges, or using 'de minimus' guidance for properties with minor strip takings.

J. Section 6(f) Resources

No apparent impacts.

IV. PRELIMINARY PROJECT INFORMATION

A. Existing Conditions/Roadway Data

A summary of the existing conditions can be seen in Table 2. The segment of the roadway within the project limits has $12-\mathrm{ft}$ lanes, $10-\mathrm{ft}$ shoulders, and vertical curves with grades of approximately 5.5%. Other existing roadway information can be viewed in the roadway plans for Mountain Parkway (KY 9009) and US 460 in Appendix F. Additional pictures of the project site can be viewed in Appendix I.

Table 2: Existing Conditions and Data Summary			
County: Route Number(s):	Magoffin		
	KY 9009	Road Name:	Bert T. Combs
			Mountain
Item No.:	10-140.00		Parkway
BMP:	74.5	EMP:	
Project Length:	1.1 miles		
Rdwy. Class.:	Rural Principal Arterial	State Class.:	Primary
Truck Class:	AAA		
ADT (current):	6,000 to 8,100		
Terrain:	Mountainous	Access Control:	Controlled
Posted Speed:	55 MPH	Median Type:	Undivided
Funding Type:	D-SP, R\&U-SPB, C-SB2		
Roadway Data:			
	Existing Conditions	Design Criteria*	
No. of Lanes	2 + Passing Lanes	2	
Lane Width	12 ft	12 ft	
Shoulder Width	10 ft	8 ft	
Minimum Radius	954.83 ft	1205 ft	
Maximum Grade	5.50\%	6\%	
		* 60 MPH Design Sp	
Adequacy Rating			
\%:	56.19		
Bridge Data:			
	077B00040N	077B00041N	077B00042N
Max. Span Length	80.1 ft	51.8 ft	49.9 ft
Length	417.0 ft	161.1 ft	159.1 ft
Width, out to out Width, curb to	33.1 ft	45.3 ft	33.1 ft
curb	29.9 ft	42.0 ft	29.9 ft
Sufficiency Rating	70.8	87.1	80.0

B. Utilities

A summary of the utility contacts in the project area is below.

Electric:	Kentucky Power Company (A.E.P.)
	Ronald Canfield
	12333 Kevin Ave.
	Ashland, KY 41102
	606-929-1462
Telephone:	Foothills Rural Telephone
	Tom Preston
	P.O. Box 240
	Staffordsville, KY 41256
	606-297-3501
Water:	Magoffin County Water District
	Jim Hoskins
	P.O. Box 47
	Salyersville, KY 41465-0047
	606-349-6818
Television:	Rick Howard TV Cable
	Rick Howard
	P.O. Box 330 (Route 40)
	Salyersville, KY 41465
	606-349-3317
Gas:	Sigma Gas Company
	Estill Branham
	P.O. Box 22
	Salyersville, KY 41465
	(606) 349-1505
	B.T.U. Pipeline
	Richard Williams
	606-884-2000

A preliminary sketch of the approximate location of the utilities in the project area can be viewed in Figure 10. This information was obtained from field inspection, existing roadway plans, and a GIS database. The location of utilities will need to be verified as the project survey is completed in Phase I Design.

Figure 10: Utility Locations

C. Agency Coordination

The Project Team met on June 23, 2010 to review and discuss the project and the DNA. Several alternates were discussed. Considering the limited amount of money available for this project and the possibility of creating a new route south of Salyersville that would bypass much of this segment, the project team prefers not to proceed with an alternate to widen the parkway within the project limits. Instead the alternates considered include improvements to the interchange with KY 7 and the intersection with US 460 .

The minutes of the meeting can be reviewed in Appendix J.

v. PROJECT PURPOSE AND NEED STATEMENT

A Purpose and Need Statement is the foundation for project decision-making and is needed for projects requiring NEPA documentation. Based upon the information presented in

Section II of this report and discussion of the project team, the following Purpose and Need Statement was drafted for this project:

The Mountain Parkway provides a vital connection between Central Kentucky and many communities and rural areas of Southeastern Kentucky. The Mountain Parkway interchange with KY 7 provides access to the parkway for residents, coal trucks, school buses and other traffic in the Salyersville area. The geometry of the ramps at the KY 7 interchange does not meet recommendations. The intersection of Mountain Parkway and US 460 has a history of rear-end collisions. The purpose of this project is to improve the safety, the geometrics, and the connectivity between Central Kentucky and many communities and rural areas of Southeastern Kentucky, and to improve highway performance along this corridor to facilitate Economic Development.

VI. POSSIBLE ALTERNATIVES

The following are several of the alternatives analyzed and discussed during the development of this study. All estimates were completed on a cost per unit bases. The yellow alignment in each Figure is a preliminary sketch of the alternate being discussed.

A. Alternate \#1 - No Build

Put this project on hold until it is decided if the new route around Salyersville moves forward and where it will connect to the existing roadway.

B. Alternate \#2 - Modify Existing Cloverleaf Exit Ramp

The cloverleaf ramp will be increased to the recommended minimum radius of 230 feet. The overpass bridge will need to be widened to accommodate the extension of the climbing lane that will become the deceleration lane at the off ramp. The westbound on-ramp to KY 9009 will have to be reconstructing and the bridge over the Licking River will need to be widened to accommodate the acceleration lane. The acceleration and deceleration lanes are recommended to be approximately 800 feet and 405 feet, respectively. At least two residences would be affected and there would be some impact to utilities. A sketch of this alternative can be viewed in Figure 11.

Figure 11: Alternate \#2

The following is the preliminary cost estimated for Alternate \#2:

Phase	Estimate
Right of Way	
Utilities	$\$ 200,000$
Construction	$\$ 100,000$
	$\$ 1,140,000$
	$\$ 1,440,000$

C. Alternate \#3 - Construct Westbound Off-Ramp on North Side of KY 9009

This alternate would replace the westbound cloverleaf off-ramp with a diagonal ramp on the opposite side of KY 7 eliminating the substandard radius. There is a westbound passing lane that could be dropped at the ramp and used as a deceleration lane. This alternate would not require the widening of any structures. A sketch of this alternate can be seen in Figure 12. The roadway plans, dated 1966, indicate that there could be two properties impacted, but no structures. Utilities would also be impacted.

The following is the preliminary cost estimated for Alternate \#3:

Phase	Estimate
Right of Way	$\$ 5,000$
Utilities	$\$ 100,000$
Construction	$\$ 640,000$
	$\$ 745,000$

Figure 12: Alternate \#3

D. Alternate \#4 - Replace Ramps North of KY 9009 with a Tight Urban Diamond

This alternate would replace the westbound off ramp, and the westbound on-ramp with a tight diamond configuration. The existing westbound passing lane could be dropped at the entrance to the off-ramp and serve as the deceleration lane. This alternate would have less of an impact on right of way, would eliminate the tight radius of the cloverleaf ramp and would allow for adequate acceleration and deceleration lengths on the newly constructed ramps. The topography of the project site appears that it would support the tight urban diamond, but further analysis would need to be done in future project phases if this alternate is chosen to move forward. A sketch of this alternate can be seen in Figure 13.

The following is the preliminary cost estimated for Alternate \#4:

Phase	Estimate
Right of Way	$\$ 5,000$
Utilities	$\$ 100,000$
Construction	$\$ 750,000$
	$\$ 855,000$

Figure 13: Alternate \#4
E. Alternate \#5 - Widen the overpass Bridge to Accommodate Westbound Exit Lane

This alternate would widen the KY 7 overpass bridge to accommodate the extension of the passing lane that would act as a deceleration lane and exclusive exit lane for the westbound off-ramp onto KY 7. The other ramps would remain the same. There would be no right of way impacts, and utility impacts would only occur as a result of the bridge widening. However, the existing radius of the off-ramp would decrease from 75 feet to approximately 67 feet. The roadway plans, dated 1966, indicate that there could be two properties impacted, but no structures. Utilities would also be impacted. A sketch of this alternate can be seen in Figure 14.

The following is the preliminary cost estimated for Alternate \#5:

Phase	Estimate
Right of Way	-
Utilities	$\$ 50,000$
Construction	
	$\$ 530,000$
	$\$ 580,000$

Figure 14: Alternate \#5

F. Alternate \#6 - Extend US 460 Left Turn(\& Thru) Lane/Restripe TWLTL

The left turning volume at this location is 4600 vehicles per day (vpd). According to the Nomograph for Storage for a Single Turn Lane at a Signalized Intersection provided in Chapter 9 of the Highway Design Manual, the length of the turning lane should be a minimum of approximately 525 feet. The storage currently provided is approximately 100 feet. Restriping of the existing Two-Way Left Turn Lane (TWLTL) for an additional 425 feet, or a length is considered feasible in this location, would create storage for leftturning vehicles to queue and may reduce the number of rear-end collisions that are occurring here. A sketch of this alternate can be seen in Figure 15.

The preliminary cost to restripe the lane would be $\mathbf{\$ 5 , 0 0 0}$.

Figure 15: Alternate \#6

VII. SUMMARY

This study is a Data Needs Analysis (DNA) of a project located on the Bert T. Combs Mountain Parkway in Magoffin County, Item Number 10-140.00, from the bridge over Licking River to the end of the Mountain Parkway in Salyersville. Through analysis of the existing roadway geometrics, crash data, site visits, and discussion with the project team, several needs were identified within the project limits. The following were identified as project needs:

- The ramp geometry at the KY 7 interchange currently does not meet recommendations in AASHTO's A Policy on Geometric Design of Highways and Streets.
- The intersection of Mountain Parkway and US 460 has a history of rear-end collisions.
- The Mountain Parkway provides a vital connection between Central Kentucky and many communities and rural areas of Southeastern Kentucky, but does not provide the same type of facilities as the roadways it connects in these regions (i.e. multi-lane roadways).

The purpose of this project is to improve the safety, the geometrics, and the connectivity between Central Kentucky and many communities and rural areas of Southeastern

Kentucky, and to improve highway performance along this corridor to facilitate Economic Development.

Considering the limited amount of money available for this project and the possibility of creating a new route south of Salyersville that would bypass much of this segment, the project team did not want to proceed with an alternate to widen the parkway within the project limits. Instead the alternates considered include improvements to the interchange with KY 7 and the intersection with US 460.

Included in the alternates were a no build recommendation, four alternates for improvements to the KY 7 Interchange ramps with costs ranging from $\$ 580,000$ to $\$ 1.4$ million, and an alternate to lengthen a turning lane on US 460 through restriping. All of these alternates are well within the money allocated to this project, which is over $\$ 16$ million total.

For more information regarding this study please contact:
Jill Asher or Steve Ross, Strategic Planning Branch
Kentucky Transportation Cabinet
Division of Planning, $5^{\text {th }}$ Floor West
200 Mero St.
Frankfort, KY 40622
(502) 564-7183

Appendix A - Exhibits

Legend

—— US Highways
Parkways
Exhibit 1: Location Map Item 10-140.00 Magoffin County Mountain Parkway (KY 9009)
—— State Roads

- Local Roads

Exhibit 2: Topographical Map Item 10-140.00

Magoffin County

 Mountain Parkway (KY 9009)

Legend

- City Points
----- County Boundary Lines
—— Interstates
- Parkways

US Highways
Corporate Boundary Lines

Exhibit 4: System Linkage Map
Item 10-140.00
Magoffin County
Mountain Parkway (KY 9009)

40
Miles

Appendix B - UPL Project Information Forms

NEW PIF <> SEARCH <> STATUS DIVISION OF PLANNING ADMIN <> HELP <> LOGOUT

GENERAL INFO ROW/UTIL ECO/SOCIAL ENV/AIRQLTY COST EST HIGHWAY ATT PIF STATUS RANKING

GENERAL INFORMATION

The PIF has an attachment. Click this Image for PDF:

Control No: 10077 D9009 106.30
Requestor Name:
Requestor Title:
Requested By Date: 10/1/2004 12:00:00 AM
Form Completed By: Freddie Goble
Title/Organization: BSADD
Form Completed Date: 1/4/2004 12:00:00 AM
District: 10
County: Magoffin
Prefix: KY
Route No: 9009
Route Type: D
Suffix:
BMP : 63.084
Length: 12.656

Status: Active			\checkmark
Mode: Highways			\checkmark
Type: Reconstruction			∇
ADD: BIG SANDY			
MPO: Select			
Urban Area: n / a			
Parent Control No: 10077 D9009 106.30			
RSE Unique No: 077-KY-9009-000			
State System:	BMP	EMP	SPRS
	63.0840	75.6270	State Primary (Pa
Functional System:	BMP	EMP	FC
	63.0840	75.6270	Rural Principal

EMP: 74.772

Existing Studies (Year): 1998 ADVANCE PLANNING STUDY
MOUNTAIN PKY EXTENSION - MAJOR WIDENING TO 4 LANES FROM 0.3 MI E OF THE KY 134/JOHNSON CREEK BRIDGE TO KY 7

Achieve safer and more efficient access to central
Kentucky，and improve economic prospects for southeastern Kentucky．

Regional Goal：

Last Updated Date：6／14／2010 10：48：30 AM
Last Updated By：jamie．pinson
Possible Funding source：$\square \mathrm{IM} \square \mathrm{NH} \square \mathrm{HES} \square \mathrm{BR} \nabla \mathrm{STP} \square \mathrm{SP} \square \mathrm{TE} \square \mathrm{CMAQ} \square \mathrm{PLH}$ Other：

Highway Network：\square Non NHS $『$ NHS $『$ NN $■$ Scenic Way $『$ Coal Haul \square Bike \square Forest ■ Strahnet \mathbb{V} Ext Weight \mathbb{V} ADHS

Cancel

Appendix C - Traffic Forecast Report

Executive Summary

Traffic Forecast Report Mountain Parkway (KY 9009) Widening from Licking River Bridge to KY 3048 / US 460 Magoffin County, Kentucky Item No. 10-0140.00

Final Report
July 26, 2010

Prepared by:

815 West Market Street - Louisville, Kentucky 40202

Table of Contents

Page
Executive Summary 2
Table 1 Current Traffic Count Data 3
Table 2 Population Data 4
Figure 1 Project Location6
Figure 2 Count Station Locations 7
Figure 3 Traffic Summary 8
Appendix A Turning Movements 9
Appendix B ESALs 16
Commonly Used Abbreviations and their Descriptions

ADT	Average Daily Traffic	Without any adjustment
DHV	Design Hour Volume	$30^{\text {th }}$ highest hour of a year
ESAL	Equivalent Single Axle Load	A measure of traffic's impact on roadway
\%T	Truck Percentage	The percentage trucks to total volume
FC	Functional Class	Refers to a road's importance
GR	Growth Rate	A value normally compounded annually
PHF	Peak-Hour Factor	Considers a 15-minute spike in an hourly count
K-Factor	K-30	th hour Factor
D-Factor	Directional Factor	DHV divided by ADT (DHV/ADT)
MP	Mile Point	Percentage of dominant flow to total
ATR	Automatic Traffic Recorder	A permanent and continuous recording station
KYSTM	Kentucky Statewide Model	A computerized representation of KY roads

Traffic Forecast Executive Summary
 Mountain Parkway (KY 9009) Widening from Licking River Bridge to KY 3048 / US 460
 Item No. 10-0140.00

EXECUTIVE SUMMARY

Forecast Summary

The purpose of this report is to forecast traffic for two sections of the Mountain Parkway (KY 9009) between the Licking River Bridge and KY 3048 / US 460 and also two interchanges with KY 7 and KY 3048 / US 460 in Magoffin County, Kentucky (see Figure 1). The forecast will be used for the widening of the Mountain Parkway in the study area.

Summary Table

| Location | 2032
 ADT | 2032
 DHV | $\mathbf{2 0 3 2}$
 Truck \% | 20 Year
 ESALs |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Mountain Parkway between Licking
 River Bridge and KY 7 | 8800 | 820 | 26 | 9.8 M |
| Mountain Parkway between KY 7 and
 KY 3048 / US 460 | 11900 | 1090 | 26 | 14.6 M |
| KY 7 South of Mountain Parkway | 9100 | 800 | | |
| KY 7 North of Mountain Parkway | 5000 | 540 | | |
| US 460 South of Mountain Parkway | 24000 | 2400 | | |
| US 460 North of Mountain Parkway | 14900 | 1600 | | |

The sections which follow provide background and details concerning the types of forecasts that were developed for the project. A summary of the forecast methods and data include
$>$ the current-year (2010) traffic volumes
$>$ design year (2032) growth factors
$>$ design-hour traffic volumes
$>$ percentages of truck traffic
> peak-hour factors
$>$ turning movements

Types of Forecasts

The following types of forecasts were developed:

- Build 2010 and 2032 Average Daily Traffic
- Build 2010 and 2032 Design-Hour Volumes (AM and PM)
- Build 2010 and 2032 Percent Trucks (ADT \& Design Hour)
- Build Twenty-Year ESALs

Current-Year Volumes

Existing traffic count stations in the vicinity of the project are shown on Figure 2. The current (year 2010) traffic volumes, shown on Figure 3 and in Table 1, were based on count data from KYTC, peak hour turning movements were collected by Qk4 for this project in June of 2010 at the Mountain Parkway interchanges with KY 7 and KY 3048 / US 460. These peak-hour turning movement counts were collected during two time periods: AM (7-9 a.m.) and PM (4-6 p.m.).

Table 1: Current Traffic Count Data

Route	KYTC Station $\#$	From	To	ADT	Year of Last Count	Daily Truck \%	Peak Truck \%
KY 9009	077288	KY 30	KY 7	5,897	2009	n/a	n/a
KY 9009	077287	KY 7	KY $3048 /$ US 460	8,022	2009	20.8%	14.9%
KY 7	077251	KY 1090	KY 9009	6,045	2008	n/a	n/a
KY 7	077 A21	KY 9009	Hornets Drive	3,306	2009	n/a	n/a
US 460	077279	KY 9009	Old KY 114	15,290	2009	11.3%	9.1%
US 460	077 A14	Ward Rd	KY 9009	10,064	2009	4.1%	3.9%

MP $=$ Mile Post

Design-Year/Growth Factors

Multiple sources, including historical traffic volume counts, past population data, and future population projections, were analyzed to develop a traffic volume growth rate. The population projections in Table 2 show an average annual growth rate of 0.70% for Kentucky and 0.17% for Magoffin County between 2005 and 2030. Historical traffic counts along the Mountain Parkway in the study area show a linear growth rate of 1.53% west of KY 7 and a growth rate of 1.73% east of KY 7. Statewide, the annual average growth rate for Rural Principal Arterials is listed as 2.62% in the KYTC's Traffic Forecasting Report - 2008. Furthermore, the average annual growth for the same functional class in Magoffin County alone is listed as 1.79% in the above-mentioned document.

Taking into account all of these sources of data, it was decided a 1.75% growth rate would be applied to determine future year 2032 traffic volumes.

Table 2: Population Data
HISTORICAL POPULATION SUMMARY

Area	1950 Population	1960 Population	1970 Population	1980 Population	1990 Population	2000 Population	$\begin{gathered} \text { 50-60 } \\ \text { Pct } \\ \text { Change } \end{gathered}$	60-70 Pct Change	$70-80$ Pct Change	80-90 Pct Change	$\begin{gathered} 90-100 \\ \text { Pct } \\ \text { Change } \\ \hline \end{gathered}$
Kentucky	-	3,038,156	3,220,711	3,660,334	3,686,892	4,041,769	-	6.0\%	13.6\%	0.7\%	9.6\%
Magoffin County	-	-	10,443	13,515	13,077	13,332	-	-	29.4\%	-3.2\%	1.9\%
Sources: U.S. Bureau of the Census, Kentucky State Data Center											

FUTURE POPULATION PROJECTIONS SUMMARY

Area	2005 Population	2010 Population	2015 Population	$\begin{gathered} 2020 \\ \text { Population } \end{gathered}$	2025 Population	2030 Population	$\begin{gathered} 05-10 \\ \text { Pct } \\ \text { Change } \end{gathered}$	$10-15$ Pct Change	$15-20$ Pct Change	$20-25$ Pct Change	$25-30$ Pct Change
Kentucky	4,171,016	4,326,490	4,502,595	4,660,703	4,799,443	4,912,621	3.7\%	4.1\%	3.5\%	3.0\%	2.4\%
Magoffin County	13,193	13,472	13,542	13,600	13,660	13,700	2.1\%	0.5\%	0.4\%	0.4\%	0.3\%
Sources:	S. Bureau of	e Census, K	ntucky State	ta Center							

ANNUAL POPULATION GROWTH RATES FROM HISTORICAL DATA AND PROJECTIONS											
	50-60	60-70	70-80	80-90	90-00	05-10	10-15	15-20	20-25	25-30	05-30
Area	GR										
Kentucky	-	0.59\%	1.29\%	0.07\%	0.92\%	0.73\%	0.80\%	0.69\%	0.59\%	0.47\%	0.70\%
Magoffin County	-	-	2.61\%	-0.33\%	0.19\%	0.42\%	0.10\%	0.09\%	0.09\%	0.06\%	0.17\%

Design-Hour Volumes

A high hour ratio (highest hourly volume/daily volume) was determined from KYTC traffic counts for each roadway segment. A DHV factor based on month and day of week was applied to this ratio to determine a K-factor for each roadway section. DHVs calculated from the 2010 turning movement counts were then divided by the calculated K-factors to estimate existing 2010 ADTs. This resulted in 2010 ADTs that are higher in some cases than those counted by KYTC in 2009 and 2010.

Example: Mountain Parkway Between KY 7 and US 460/ KY 3048

- ADT from 2009 Count - 9,083 vpd
- High hour from 2009 Count - 686 vph
- High Hour Ratio - 686 / 9,083 = 7.55\%
- \% to add for Thursday count in June for Rural Principal Arterial - 1.57\%
- K-Factor $-7.55 \%+1.57 \%=9.12 \%$
- Peak hour from 2010 Turning Movements - 891 vph
- DHV factor for Rural Principal Arterial in June - 1.20
- DHV calculated from Turning Movement peak hour $-891 \times 1.20=1069$
- Calculated 2010 ADT - 1069 / . $0912=11,700 \mathrm{vpd}$

Truck Percentages

Year 2009 vehicle classification data was collected from KYTC count Station 077287 on the Mountain Parkway at MP 75.4 between KY 7 and KY 3048 / US 460. Data from this count station shows a daily truck percentage of 20.8% and peak hour heavy truck percentage of 14.9%. Data from the Traffic Forecasting Report - 2008 shows an average daily truck percentage for Rural Principal Arterials of 16.79% in Kentucky. The design hourly truck percentage for this same functional classification was 13.0%. Functional class averages were used to determine an overall average 1.0% annual growth rate for truck percentages. As a result, the 2032 forecasted truck percentage is 26%.

Turning Movements

Two 2010 peak hour (AM and PM) turning movement counts were collected in June of 2010 by Qk4, at the Mountain Parkway interchanges with KY 7 and KY 3048 / US 460. These counts were used to derive the turning movements for this forecast. They were factored to estimate current year ADT and DHV turning movements, which were grown to 2032 using methods described above.

For peak-hour analysis - possibly to be used for signal warrants, signal timing, simulation modeling, etc. -the DHV turning movements need to be reduced, as described in the turning movement data in Appendix A. It should be noted that each movement at a given intersection may have a different one-hour peak during the two hours counted. The peak-hour factor for each movement can be found in the turning movement counts performed for that intersection, shown in Appendix A.

APPENDIX A

TURNING MOVEMENTS

2010 Turning Movements

T1: Mountain Parkway \& KY 7
T2: Mountain Parkway \& KY 3048 / US 460
PROJECT: Mt. Parkway Improvements from Licking River Bridge to US 460 01D
MARS NUMBER. 8063801 D
REQUEST DATE: 6/16/2010
ANALYST:
SCENARIO: 2010 ADT and Design Hour Volumes
INTERSECTION: T1: KY 7 @ Mt. Parkway (KY 9009)

PROJECT: Mt. Parkway Improvements from Licking River Bridge to US 460 MARS NUMBER: 80638 01D
REQUEST DATE: 6/16/2010
ANALYST: B Siria
SCENARIO: 2010 ADT and Design Hour Volumes INTERSECTION: T2: End of Mt. Parkway @ US 460/KY 3048

2032 Turning Movements

T1: Mountain Parkway \& KY 7 North
T2: Mountain Parkway \& KY 3048 / US 460
NOTE: K-Factors, Directional Distributions, and Peak Hour Factors were determined from a 2008 Turning
Mt. Parkway Improvements from Licking River Bridge to US 460

APPENDIX B

ESALs

FORECAST OF EQUIVALENT SINGLE AXLE LOAD ACCUMULATIONS (20-year)

ROUTE ID:

County	Magoffin
Road Name	Mt. Parkway
Functional Class	2 - Rural Principal Arterial
Project Description	
Scenario Segment Description	Road Widening \& Safety Improvements
Segment 1-Licking River Bridge to KY 7	

Date	07/23/10
Forecaster	

MARS No.	8063801 D
Item No.	$10-0140.00$
Route No.	KY 9009
Beg. MP	74.486
End MP	74.746
T.F. No.	LA 4
No. of Lanes	2
1 or 2 way	2

REFERENCES:

Previous Forecasts	1
Traffic Volume	287
Milepoint	75.4
Truck Percent	287
Milepoint	75.4
ESAL Information	2007 Aggregated ESALS
Growth Rate	1.75%

K- Factor Value	10.0%
K-Factor Source	287
PHF	0.9

TRAFFIC PARAMETERS:

		Present Year	Growth Rate	Construction Year	Median Year	Design Year
		2010		2012	2022	2032
Volume	(AADT)	6000	1.75\%	6200	7400	8800
Percent Trucks	(\%T)	20.8\%	1.0\%	21\%	23\%	26\%
Number of Trucks		1200	2.8\%	1300	1700	2300
Percent Trucks Hauling Coal	(\%CT)	4\%	-2.7\%	4\%	3\%	2\%
Non-Coal Trucks:						
Axles/Truck	(A/T)	3.083	0.00\%	3.083	3.083	3.083
ESALs/Axle	(ESAL/A)	0.260	1.60\%	0.268	0.315	0.369
Coal Trucks:						
Axles/Truck	(A/CT)	5.123	0.00\%	5.123	5.123	5.123
ESALs/Axle	(ESAL/CA)	3.3	0.00\%	3.300	3.300	3.300

ESAL CALCULATIONS: see attached esal calculation sheet

FORECAST OF EQUIVALENT SINGLE AXLE LOAD ACCUMULATIONS (20-year)

ROUTE ID:

County

Road Name

Functional Class

Project Description

Scenario
Segment Description

Magoffin
Mt. Parkway
2 - Rural Principal Arterial
Road Widening \& Safety Improvements
No Build
Seg 2 - Between KY 7 and US 460

Date	07/23/10 A Coffey

MARS No.	8063801 D
Item No.	$10-0140.00$
Route No.	KY 9009
Beg. MP	74.746
End MP	75.627
T.F. No.	LA \#4
No. of Lanes	4
1 or 2 way	2

REFERENCES:

Previous Forecasts	0
Traffic Volume	287
Milepoint	75.4
Truck Percent	287
Milepoint	75.4
ESAL Information	2007 Aggregated ESALS
Growth Rate	1.75%

K- Factor Value	9.1%
K-Factor Source	287
PHF	0.9

TRAFFIC PARAMETERS:

		Present Year	Growth Rate	Construction Year	Median Year	Design Year
		2010		2012	2022	2032
Volume	(AADT)	8100	1.75\%	8400	10000	12000
Percent Trucks	(\%T)	20.8\%	1.0\%	21\%	23\%	26\%
Number of Trucks		1700	2.8\%	1800	2300	3100
Percent Trucks Hauling Coal	(\%CT)	7\%	-2.8\%	6\%	5\%	4\%
Non-Coal Trucks:						
Axles/Truck	(A/T)	3.083	0.00\%	3.083	3.083	3.083
ESALs/Axle	(ESAL/A)	0.260	1.60\%	0.268	0.315	0.369
Coal Trucks:						
Axles/Truck	(A/CT)	5.123	0.00\%	5.123	5.123	5.123
ESALs/Axle	(ESAL/CA)	3.3	0.00\%	3.300	3.300	3.300

ESAL CALCULATIONS:
SEE ATTACHED ESAL CALCULATION SHEET

Appendix D - Collision Data

LIGHT CONDITION
DAYLIGHT
DARK－HWY LIGHTED／ON
DAYLIGHT
DAYLIGHT
DAYLIGHT
DAYLIGHT
DARK－HWY LIGHTED／ON
DARK－HWY NOT LIGHTED
DARK－HWY LIGHTED／ON
DAYLIGHT
DAYLIGHT
DAYLIGHT
DAYLIGHT
DAYLIGHT
DAYLIGHT
DAYLIGHT
DAYLIGHT
DARK－HWY LIGHTED／ON
DAYLIGHT
DARK－HWY LIGHTED／ON

z 山己

VEHICLE ENTERING／LEAVING ENTRANCE
REAR END IN TRAFFIC LANES BOTH VEHICLES MOVING
VEHICLE BACKING
COLLISION WITH ANIMAL
OTHER ROADWAY OR MID－BLOCK COLLISION
REAR END IN TRAFFIC LANES BOTH VEHICLES MOVING
VEHICLE BACKING
OTHER ROADWAY OR MID－BLOCK COLLISION
REAR END IN TRAFFIC LANES BOTH VEHICLES MOVING
REAR END IN TRAFFIC LANES BOTH VEHICLES MOVING
REAR END－OTHER
REAR END IN TRAFFIC LANES BOTH VEHICLES MOVING
REAR END IN TRAFFIC ONE VEHICLE STOPPED
REAR END IN TRAFFIC LANES BOTH VEHICLES MOVING
REAR END IN TRAFFIC ONE VEHICLE STOPPED
REAR END IN TRAFFIC ONE VEHICLE STOPPED
REAR END IN TRAFFIC ONE VEHICLE STOPPED
REAR END IN TRAFFIC LANES BOTH VEHICLES MOVING

邑
\sum_{j}^{n}

品

Appendix E - KYTC Common Geometric Practice Guidelines

COMMON GEOMETRIC PRACTICES RURAL ARTERIAL ROADS (OTHER THAN FREEWAYS)

(1) MINIMUM STOPPING SIGHT DISTANCES ARE BASED ON HEIGHT OF EYE OF 3.5 FT AND HEIGHT OF OBJECT OF 2.0FT. BOTH HORIZONTALAND VERTICAL ALIGNMENTS ARE CONSIDERED.
(2) MINIMUM PASSING SIGHT DISTANCES ARE BASED ON HEIGHT OF EYE 3.5 FT AND HEIGHT OF OBJECT OF 3.5 FT. BOTH HORIZONTAL AND VERTICAL ALIGNMENTS ARE CONSIDERED.
(3) NORMAL PAVEMENT CROSS SLOPES ON BRIDGES SHALL BE 2%.
(4) FOR GUIDANCE ON FREEWAYS, REFER TO AASHTO, "A POLICY ON GEOMETRIC DESIGN OF HIGHWAYS AND STREETS", CURRENT EDITION.
(5) WIDEN 3 FT FOR GUARDRAIL.
(6) JUSTIFICATION FOR A DESIGN SPEED LESS THAN THE REGULATORY OR POSTED SPEED MUST BE DOCUMENTED AND AVAILABLE FOR REVIEW IN THE PROJECT FILES.

Appendix F - Existing Roadway Plans

Appendix G - Structure Inventory and Appraisal Sheets

Structure Inventory and Appraisal Sheet (English Units)

ELEMENT CONDITION STATE DATA

Str Unit	Elm/Env	Description	Units	Total Qty	\% in 1	Qty. St. 1	\% in 2	Qty. St. 2	\% in 3	Qty. St. 3	\% in 4	Qty. St. 4	\% in 5	Qty. St. 5
1	22/1	P Conc Deck/Rigid Ov	(SF)	12,150	0 \%	0	100%	12,150	0 \%	0	0 \%	0	0 \%	
1	110/1	R/Conc Open Girder	(LF)	1,620	62 \%	1,000	38%	620	0 \%	0	0%	0	0 \%	0
1	205/1	R/Conc Column	(EA)	42	50 \%	21	50 \%	21	0 \%	0	0 \%	0	0 \%	0
1	210/1	R/Conc Pier Wall	(LF)	78	100%	78	0 \%	0	0 \%	0	0 \%	0	0 \%	0
1	215/1	R/Conc Abutment	(LF)	120	50 \%	60	50 \%	60	0 \%	0	0 \%	0	0 \%	0
1	234/1	R/Conc Cap	(LF)	254	49 \%	124	39 \%	100	12 \%	30	0 \%	0	0 \%	0

Structure Inventory and Appraisal Sheet (English Units)

$\begin{array}{\|c} \hline \text { Str Unit } \\ 1 \end{array}$	$\begin{aligned} & \text { Elm/Env } \\ & 301 / 1 \end{aligned}$	Pourable Joint Seal	Units (LF)	$\begin{array}{\|r\|} \hline \text { Total Qty } \\ 180 \end{array}$	$\begin{array}{\|r\|} \hline \% \text { in } 1 \\ 89 \% \end{array}$	$\begin{array}{r} \text { Qty. St. } 1 \\ 160 \end{array}$	$\begin{array}{\|r\|} \hline \% \text { in } 2 \\ 11 \% \end{array}$	$\begin{array}{\|r\|} \hline \text { Qty. St. } 2 \\ 20 \end{array}$	$\begin{array}{r} \% \text { in } 3 \\ 0 \% \end{array}$	$\text { Qty. St. } 3$	$\begin{array}{r} \hline \% \text { in } 4 \\ 0 \% \end{array}$	Qty. St. 4	$\begin{array}{\|r\|} \hline \% \text { in } 5 \\ 0 \% \end{array}$	$\text { Qty. St. } 5$
1	303/1	Assembly Joint/Seal	(LF)	45	100%	45	0 \%	0	0%	0	0 \%	0	0 \%	0
1	311/1	Moveable Bearing	(EA)	16	75%	12	25 \%	4	0%	0	0 \%	0	0%	0
1	330/1	Metal Rail Uncoated	(LF)	790	100%	790	0 \%	0	0%	0	0 \%	0	0 \%	0
1	331/1	Conc Bridge Railing	(LF)	810	100%	810	0 \%	0	0%	0	0%	0	0%	0
1	503/1	RC Curb	(LF)	810	100%	810	0 \%	0	0 \%	0	0 \%	0	0 \%	0
1	606/1	Drains	(EA)	1	100%	1	0 \%	0	0%	0	0 \%	0	0 \%	0
1	612/1	Chan Algn	(EA)	1	100%	1	0 \%	0	0%	0	0%	0	0%	0
1	613/1	Vegetation	(EA)	1	100%	1	0 \%	0	0 \%	0	0%	0	0 \%	0
Str Unit	Elm/Env	Description						ment Notes						
1	22/1	Concrete Deck - Protected w/ Rigid												
1	110/1	Reinforced Conc Open Girder/Bear												
1	205/1	Reinforced Conc Column or Pile Ex												
1	210/1	Reinforced Conc Pier Wall												
1	215/1	Reinforced Conc Abutment												
1	234/1	Reinforced Conc Cap												
1	301/1	Pourable Joint Seal												
1	303/1	Assembly Joint/Seal (modular)												
1	311/1	Moveable Bearing (roller, sliding, et												
1	330/1	Metal Bridge Railing - Uncoated												
1	331/1	Reinforced Conc Bridge Railing												
1	503/1	Reinforced Concrete Curb												
1	606/1	Drains												
1	612/1	Channel Alignment												
1	613/1	Vegetation												

BRIDGE NOTES

\square

PAST INSPECTION

Inspection Date:	01/23/2009	Type: 2 Standard (24 months)
Inspector:	DWATTS	Pontis User Key: DWATTS - Doug V

Scope:

NBI:	\checkmark	Other:	\square	Element:	\square
Underwater:	\square	Fracture Critical:	\square		

INSPECTION NOTES

\square

Structure Inventory and Appraisal Sheet (English Units)

PAST INSPECTION

Inspection Date:	01/01/2007	Type: 2 Standard (24 months)
Inspector:	RWELLS	Pontis User Key: RWELLS - Rod W

Scope:

$\mathrm{NBI}:$	\checkmark	Other:	\square
	\square		

INSPECTION NOTES
\square
INSPECTOR WORK CANDIDATES

Structure Inventory and Appraisal Sheet (English Units)

ELEMENT CONDITION STATE DATA

Str Unit	Elm/Env	Description	Units	Total Qty	\% in 1	Qty. St. 1	\% in 2	Qty. St. 2	\% in 3	Qty. St. 3	\% in 4	Qty. St. 4	\% in 5	Qty. St. 5
1	22/1	P Conc Deck/Rigid Ov	(SF)	6,560	0 \%	0	100 \%	6,560	0 \%	0	0 \%	0	0 \%	0
1	110/1	R/Conc Open Girder	(LF)	1,120	87 \%	970	9%	100	4 \%	50	0 \%	0	0 \%	0
1	205/1	R/Conc Column	(EA)	6	50 \%	3	50 \%	3	0 \%	0	0 \%	0	0 \%	0
1	215/1	R/Conc Abutment	(LF)	132	24 \%	32	76 \%	100	0 \%	0	0 \%	0	0 \%	0
1	234/1	R/Conc Cap	(LF)	107	72 \%	77	28 \%	30	0 \%	0	0 \%	0	0 \%	0
1	301/1	Pourable Joint Seal	(LF)	112	82 \%	92	18 \%	20	0 \%	0	0 \%	0	0 \%	0

Structure Inventory and Appraisal Sheet (English Units)

$\begin{array}{\|c} \hline \text { Str Unit } \\ 1 \end{array}$	$\begin{aligned} & E I m / E n v \\ & 330 / 1 \end{aligned}$	Description Metal Rail Uncoated	$\begin{array}{\|c\|} \hline \text { Units } \\ \text { (LF) } \end{array}$	$\begin{array}{r} \text { Total Qty } \\ 300 \end{array}$	$\begin{array}{\|c\|} \hline \% \text { in } 1 \\ 100 \% \end{array}$	$\begin{array}{\|r\|} \hline \text { Qty. St. } 1 \\ 300 \end{array}$	$\begin{array}{\|r\|} \hline \% \text { in } 2 \\ 0 \% \end{array}$	$\begin{array}{l\|l} \hline \text { Qty. St. } 2 & \% \\ 0 \end{array}$	$\begin{array}{\|r\|} \hline \% \text { in } 3 \\ 0 \% \end{array}$	$\text { Qty. St. } 3$	$\begin{array}{\|r\|} \hline \% \text { in } 4 \\ 0 \% \end{array}$	$\text { Qty. St. } 4$	$\begin{array}{\|r\|} \hline \% \text { in } 5 \\ 0 \% \end{array}$	$\begin{array}{r} \text { Qty. St. } 5 \\ 0 \end{array}$
1	331/1	Conc Bridge Railing	(LF)	320	100%	320	0%	0	0 \%	0	0 \%	0	0%	0
1	362/1	Traf Impact SmFlag	(EA)	1	0 \%	0	100 \%	1	0 \%	0	0 \%	0	0%	0
1	503/1	RC Curb	(LF)	320	100%	320	0 \%	0	0 \%	0	0 \%	0	0%	0
Str Unit	Elm/Env	Description					Elem	ent Notes						
1	22/1	Concrete Deck - Protected w/ Rigid												
1	110/1	Reinforced Conc Open Girder/Bear												
1	205/1	Reinforced Conc Column or Pile Ex												
1	215/1	Reinforced Conc Abutment												
1	234/1	Reinforced Conc Cap												
1	301/1	Pourable Joint Seal												
1	330/1	Metal Bridge Railing - Uncoated												
1	331/1	Reinforced Conc Bridge Railing												
1	362/1	Traffic Impact												
1	503/1	Reinforced Concrete Curb												

BRIDGE NOTES

\square

PAST INSPECTION

Inspection Date:	01/05/2009	Type: 2 Standard (24 months)
Inspector:	DWATTS	Pontis User Key: DWATTS - Doug V

Scope:

NBI:	\checkmark	Other:	\square	Element:	\square
Underwater:					
\square	Fracture Critical:				
\square					

INSPECTION NOTES
\square

Structure Inventory and Appraisal Sheet (English Units)

PAST INSPECTION

Inspection Date:	01/01/2007	Type: 2 Standard (24 months)
Inspector:	RWELLS	Pontis User Key: RWELLS - Rod W

Scope:

$\mathrm{NBI}:$	\checkmark	Other:	\square
	\square		

INSPECTION NOTES
\square
INSPECTOR WORK CANDIDATES

Structure Inventory and Appraisal Sheet (English Units)

ELEMENT CONDITION STATE DATA

Str Unit	Elm/Env	Description	Units	Total Qty	\% in 1	Qty. St. 1	\% in 2	Qty. St. 2	\% in 3	Qty. St. 3	\% in 4	Qty. St. 4	\% in 5	Qty. St. 5
1	22/1	P Conc Deck/Rigid Ov	(SF)	4,860	100%	4,860	0 \%	0	0 \%	0	0 \%	0	0 \%	0
1	110/1	R/Conc Open Girder	(LF)	810	100%	810	0%	0	0 \%	0	0%	0	0 \%	0
1	205/1	R/Conc Column	(EA)	4	100%	4	0%	0	0 \%	0	0 \%	0	0 \%	0
1	210/1	R/Conc Pier Wall	(LF)	33	100%	33	0 \%	0	0 \%	0	0 \%	0	0 \%	0
1	215/1	R/Conc Abutment	(LF)	114	47 \%	54	53 \%	60	0 \%	0	0 \%	0	0 \%	0
1	234/1	R/Conc Cap	(LF)	64	53 \%	34	47%	30	0 \%	0	0 \%	0	0 \%	0

Structure Inventory and Appraisal Sheet (English Units)

$\begin{array}{\|c} \hline \text { Str Unit } \\ 1 \end{array}$	$\begin{aligned} & \text { Elm/Env } \\ & 330 / 1 \end{aligned}$	Description Metal Rail Uncoated	Units (LF)	$\begin{array}{r} \text { Total Qty } \\ 304 \end{array}$	$\begin{array}{\|c\|} \hline \% \text { in } 1 \\ 100 \% \end{array}$	$\begin{array}{r} \text { Qty. St. } 1 \\ 304 \end{array}$	$\begin{array}{r\|} \hline \% \text { in } 2 \\ 0 \% \end{array}$	$\text { Qty. St. } 2$	$\begin{array}{\|r\|} \hline \% \text { in } 3 \\ 0 \% \end{array}$	$\begin{array}{\|r\|} \hline \text { Qty. St. } 3 \\ 0 \end{array}$	$\begin{array}{\|c\|} \hline \% \text { in } 4 \\ 0 \% \end{array}$	$\begin{array}{\|c\|} \hline \text { Qty. St. } 4 \\ 0 \end{array}$	$\begin{array}{\|r\|} \hline \% \text { in } 5 \\ 0 \% \end{array}$	$\begin{array}{r} \text { Qty. St. } 5 \\ 0 \end{array}$
1	331/1	Conc Bridge Railing	(LF)	324	100%	324	0%	0	0%	0	0 \%	0	0%	0
1	503/1	RC Curb	(LF)	324	100%	324	0%	0	0 \%	0	0 \%	0	0%	0
1	605/1	Transitions	(EA)	1	0 \%	0	100%	1	0%	0	0 \%	0	0 \%	0
1	606/1	Drains	(EA)	1	100%	1	0%	0	0%	0	0 \%	0	0%	0
1	612/1	Chan Algn	(EA)	1	100%	1	0%	0	0 \%	0	0 \%	0	0 \%	0
1	613/1	Vegetation	(EA)	1	100%	1	0 \%	0	0 \%	0	0 \%	0	0 \%	0
Str Unit	Elm/Env	Description						ment Notes						
1	22/1	Concrete Deck - Protected w/ Rigid	ew ov	verlay										
1	110/1	Reinforced Conc Open Girder/Bear												
1	205/1	Reinforced Conc Column or Pile Ex												
1	210/1	Reinforced Conc Pier Wall												
1	215/1	Reinforced Conc Abutment												
1	234/1	Reinforced Conc Cap												
1	330/1	Metal Bridge Railing - Uncoated												
1	331/1	Reinforced Conc Bridge Railing												
1	503/1	Reinforced Concrete Curb												
1	605/1	Transitions (Approach/Deck)												
1	606/1	Drains												
1	612/1	Channel Alignment												
1	613/1	Vegetation												

BRIDGE NOTES
58: New overlay

PAST INSPECTION

Inspection Date: 01/05/2009
Inspector: DWATTS
Scope:
NBI:
Underwater:

Other:
Fracture Critical:
\qquad

INSPECTION NOTES
\square

Structure Inventory and Appraisal Sheet (English Units)

PAST INSPECTION

Inspection Date:	01/01/2007	Type: 2 Standard (24 months)
Inspector:	RWELLS	Pontis User Key: RWELLS - Rod W

Scope:

$\mathrm{NBI}:$	\checkmark	Other:	\square
	\square		

INSPECTION NOTES
\square
INSPECTOR WORK CANDIDATES

Appendix H - FIRM Maps of the Study Area

LEGEND

SPECIAL FLOOD HAZARD AREAS (SFHAs) SUBJECT TO

 INUNDATION BY THE 1\% ANNUAL CHANCE FLOODThe 1\% annual chance flood (100-year flood), also known as the base flood, is the flood that has a 1% chance of being equaled or exceeded in any given year. The Special Flood Hazard Area is the area subject to flooding by the 1% annual chance flood. Areas of Special Flood Hazard include Zones A, AE, AH, AO, AR, A99, V, and VE. The Base Flood Elevation is the water-surface elevation of the 1% annual chance flood.

ZONE A No Base Flood Elevation determined.

ZONE AE Base Flood Elevations determined.
ZONE AH Flood depths of 1 to 3 feet (usually areas of ponding); Base Flood Elevations determined.

ZONE AO Flood depths of 1 to 3 feet (usually sheet flow on sloping terrain); average depths determined. For areas of alluvial fan flooding, velocities also determined.

ZONE AR Area of special flood hazard formerly protected from the 1% annual chance flood event by a flood control system that was subsequently decertified. Zone AR indicates that the former flood control system is being restored to provide protection from the 1% annual chance of greater flood event.

ZONE A99 Areas to be protected from 1% annual chance flood event by a Federal flood protection system under construction; no Base Flood Elevations determined.

ZONE V Coastal flood zone with velocity hazard (wave action); no Base Flood Elevations determined.

ZONE VE Coastal flood zone with velocity hazard (wave action); Base Flood Elevations determined.

FLOODWAY AREAS IN ZONE AE

The floodway is the channel of a stream plus any adjacent floodplain areas that must be kept free of encroachment so that the 1% annual chance flood can be carried without substantial increases in flood heights.

OTHER FLOOD AREAS

ZONE X
Areas of 0.2% annual chance flood; areas of 1% annual chance flood with average depths of less than 1 foot or with drainage areas less than 1 square mile; and areas protected by levees from 1% annual chance flood.

OTHER AREAS

ZONE X

ZONE D
Areas determined to be outside the 0.2% annual chance floodplain.
Areas in which flood hazards are undetermined, but possible.
NEIP

FIRM

FLOOD INSURANCE RATE MAP
BELL COUNTY,
KENTUCKY
AND INCORPORATED AREAS

PANEL 239 OF 360
(SEE MAP INDEX FOR FIRM PANEL LAYOUT) CONTAINS:

COMMUNITY	NUMBER	PANEL	SUFFI
BELL COUNTY	210010	0239	D
MIDOLESBORO, CITY OF	215190	0239	D

Notice to User. The Map Number shown below should be used When placing map orders, the Community Number shown above shourd be used on insurance appocications for the subbect
communty MAP NUMBER 21013C0239D

EFFECTIVE DATE SPETEMBER 29, 2006

Federal Emergency Management Agency

This is an official copy of a portion of the above referenced flood map. It was extracted using F-MIT On-Line. This map does not reflect changes or amendments which may have been made subsequent to the date on the tie block. For the latest product information about National Flood Insurance Program flood maps check the FEMA Flood Map Store at unv.msc.fema.go

COASTAL BARRIER RESOURCES SYSTEM (CBRS) AREAS

OTHERWISE PROTECTED AREAS (OPAs)

CBRS areas and OPAs are normally located within or adjacent to Special Flood Hazard Areas.
1\% annual chance floodplain boundary
0.2% annual chance floodplain boundary
Floodway boundary
Zone D boundary
CBRS and OPA boundary (EL 987) feet

* Referenced to the North American Vertical Datum of 1988 (NAVD 88)
(23)-- A \quad Cross section line
$97^{\circ} 07^{\prime} 30^{\prime \prime}, 32^{\circ} 22^{\prime} 30^{\prime \prime}$
4275000 M
6000000 FT
${ }^{\text {DX5510 }} \times$
- M1.5

Geographic coordinates referenced to the North American Datum of 1983 (NAD 83)
1000-meter Universal Transverse Mercator grid ticks, zone 17 5000 -foot grid values: Kentucky State Plane coordinate system, South Zone (FIPSZONE = 1602), Lambert projection
Bench mark (see explanation in Notes to Users section of this FIRM panel)
River Mile
MAP REPOSITORY
Refer to listing of Map Repositories on Map Index
EFFECTIVE DATE OF COUNTYWIDE
FLOOD INSURANCE RATE MAP
SEPTEMBER 29, 2006
EFFECTIVE DATE(S) OF REVISION(S) TO THIS PANEL

Furance Program at 1-800-638-6620.

MAP SCALE $1^{\prime \prime}=500^{\prime}$

FIRM

FLOOD INSURANCE RATE MAP
BELLCOUNTY,
KENTUCKY
AND INCORPORATED AREAS

PANEL 239 OF 360
(SEE MAP INDEX FOR FIRM PANEL LAYOUT) CONTAINS:

COMMUNITY

BELL COUNTY
MIDDLESBORO, CITY OF

$215190 \quad 0239 \quad \mathrm{D}$

Notice to User The Map Number shown below should be used uhen placing map orders, the Community Number shown above should be used on insurance applications for the subject community

 MAP NUMBER 21013C0239D
 EFFECTIVE DATE SPETEMBER 29, 2006

Federal Emergency Management Agency

Appendix I - Photographs

KY 9009 Overpass @ KY 7

US 460 Intersection Looking East

End of KY 9009

US 460 Looking at Entrance to KY 9009

US 460 Intersection

KY 9009 Passing Lane

KY 9009

KY 9009

Overpass Bridge

KY 7 Looking SE

Looking NW from Exit Ramp on KY 7

US 460 Intersection

US 460 Looking Toward Intersection

KY 9009 Westbound Exit Ramp

US 460 Looking away from Intersection

US 460 Looking away from Intersection

Appendix J - Project Team Meeting Minutes

MEETING MINUTES

Project:	Pre-Design Scoping Study for 10-140.00	
Purpose:	Project Team Meeting	
Place:	Kentucky Transportation Cabinet (KYTC), District 10 Conference	
	Room, Jackson, Ky.	
Meeting Date:	July 23, 2010, 10:30 am EST	
In Attendance:	Jason Blackburn	KYTC-D10 Planning
	Bruce Napier	KYTC-D10 R/W
	Crystal Mapel	KYTC-D10 PD\&P
	Jarrod Morgan	KYTC-D10 Utilities
	Jeff Allen	KYTC-D10 Environmental
	Corbett Caudill	KYTC-D10 Project Development
	Keith Damron	KYTC-CO Planning
	Shane Tucker	KYTC-CO Planning
	Jill Asher	KYTC-CO Planning

INTRODUCTIONS: Jill opened the Project Team Meeting by discussing the purpose of the Pre-Design Scoping Studies. Similar studies to these, formerly known as First Look Studies, have been done in the past by some of the districts. It is anticipated that a study of this type will be done for every project preceding the design phase if there is no planning study associated with the project. The nine elements of Purpose and Need as defined by NEPA will be addressed and used to create a purpose and need statement for each project. Pre-Design Scoping Studies will also provide more defined project scopes, cost estimates for possible alternatives, potential environmental impacts, and other information that will be of assistance in the Phase I Design process. This study was done for Item Number 10-140.00 on KY 9009, Mountain Parkway Extension, in Magoffin County. A handout of the meeting presentation was given to all meeting attendees. A sign-in sheet was also passed around.

Corbett gave a brief history of some of the studies and design projects that have occurred on this section or roadway. There has been public opposition to every alternative. Alternatives include going through Salyersville or bypassing the heavily developed section on US460 with a new route.

NINE ELEMENTS OF A PURPOSE AND NEED STATEMENT: A checklist of the nine elements was displayed and the importance of each of the elements as they relate to the subject project was discussed:

Legislation - The Right-of-Way and Utility phases are scheduled for 2010 with SPB funding in the current Highway Plan. Construction is scheduled for 2013 with SB2 funding. The description in the Highway Plan states that this project is for widening and safety improvements from MP 74.5 to 75.6 . No one in the meeting knew which legislator
is promoting this project. Jill is checking to see if Program Management has any information.

Project Status - Design funds are authorized. Preliminary Design plans were completed in 1999 and 2004 for a bypass of this section. The project didn't proceed due to public opposition.
A planning study, now in draft form, including this section of roadway was done to provide programming information for widening of Mountain Parkway. This section was rated $1^{\text {st }}$ priority of the sections in the study by Districts 10 and 12.

System Linkage - Mountain Parkway is a major, two-lane regional connector of I-64, soon to be 6-lane, to US 23, a 4-lane roadway. US 23 is a N-S connection that goes from the Great Lakes to Florida. The Mountain Parkway provides a connection from Central KY to the many communities and rural areas of Southeastern KY. The project team also stated that with the recent completion of widening US 119 to four lanes in W.Va., this roadway is becoming a greater link to Virginia and W.Va. The classifications of the roadway were discussed.

Modal Interrelationships - There is no public transit on this route. CSX removed its rail line from the area a few years ago. It is used as a major coal haul route to the power plant in Clark County.

Social Demands \& Economic Development - This route is used to access shopping centers, higher education facilities, and hospitals in Central KY and W.Va. It is also used locally as a route to the schools in Salyersville. There is development potential in communities located east of the project site, such as Paintsville and Pikeville.

Transportation Demand - Forecasts were requested, and traffic counts have been completed. The current ADT is approximately 8,100 , with a preliminary forecasted ADT of 11,900 in 2032. ADTs are expected to be much higher on the adjacent section of US 460. It was also noted that the traffic counts were obtained during the summer; they do not include school traffic.

Capacity - According to the Division of Planning's data, the current V/SF is 0.33. Based on the preliminary forecast, the current capacity of the existing roadway will be adequate for the near future. However, future economic and social development demands may lead to an increase in ADT that would require additional capacity.

Safety - Collision data was obtained from the KY State Police database of collisions for a three year period of time from June 1, 2007 to May 31, 2010. There were 21 reported collisions in the project area during this three year period. Fourteen of the collisions were located at the intersection with US 460 and were rear end collisions. Two were located on the ramp with KY 7. There was no night/day or weather pattern that could be determined. The manner and location of other collisions were discussed. While there were only a couple of collisions that occurred on the ramps during the analysis period, the district has received several complaints about the safety of the ramps.

Roadway Deficiencies - The roadway currently has 12 ft . lanes, 10 ft . shoulders with guardrail on both sides of the road due to steep side slopes, a maximum grade of 5.5%, a posted speed limit of 55 MPH , and an Adequacy Rating Percentile of 56.19. KYTC's Common Geometric Practices for this type of road recommends 12 ft . lanes for a 60 MPH Design Speed and 8 ft . shoulders. There are three bridges located on this project. None are rated structurally deficient, but they are functionally obsolete with substandard bridge rails. The bridges over the Licking River and over Burning Fork are not wide enough (29.9 ft . curb to curb) to accommodate the recommended 8 ft . shoulders. The curve at the end of the project has a minimum radius of 954.83 ft . which is less than the recommended radius in the Geometric Practices for Rural Arterials. The radii of the ramps could not be determined from the As-Builts available to Central Office, but it is likely that one, if not both, of the cloverleaf ramps do not meet minimum radius of curvature as defined by AASHTO's A Policy on Geometric Design of Highways and Streets. No one on the project team was aware of any flooding in the project area.

ENVIRONMENTAL CONSIDERATIONS: One of the bridges crosses over Licking River. It was noted that the project area may include Indiana bat habitat. There are no designated waters. Keith asked that the Environmental Coordinators in the districts prepare a brief overview of the environmental concerns in the project area for each PreDesign Scoping Study. He will send out an example to all the coordinators.

UTILITIES: A list of utility providers and contact information was given to Jill by Jason Blackburn. The project team asked that we also include Interstate Gas. Oil well locations also need to be added to the map. Jason will provide a sketch of the utility locations in the area to Jill.

OTHER ISSUES: There is an old waste area site adjacent to the project. It may be necessary to buy this land for corridor preservation. Waste area sites for this project will need to be determined early.

POSSIBLE OPTIONS: The following are some of the alternatives that were discussed:

- No Build - wait and see if a new bypass is constructed around Salyersville that would move the Parkway and much of the traffic off of this segment of roadway
- Improve Ramp(s) @ KY 7
- Construct an Off-Ramp in the NE quadrant to eliminate the sharp radius of the partial clover leaf in the NW quadrant. Eliminate the clover leaf ramp.
- End the ramp across from the intersection with existing westbound on-ramp.
- Reconstruct both ramps in the northern quadrants into a tight urban interchange arrangement requiring less R / W.
- Eliminate both cloverleaf ramps and make it a diamond interchange (new westbound off-ramp and eastbound on-ramp).
- Increase the radius of the ramp in the NW quadrant. Widen the overpass bridge to accommodate the extra lane (extending the climbing lane), and drop the lane at the ramp allowing for adequate deceleration. This would
also require the reconstruction of the westbound on-ramp in that quadrant and the widening of the bridge over the Licking River to accommodate an acceleration lane for this ramp.
- Widen the roadway to four lanes -A planning level cost estimate will be provided. There isn't enough money allocated for this project currently to do widen this segment of roadway. Consideration should be given to the possibility that the Parkway may be moved from this section of roadway onto a bypass around Salyersville.
- Improve the Intersection @ US 460 - At a site visit following this meeting it was determined that there is not adequate storage for vehicles on US 460 turning left. This segment of US 460 has a TWLTL and the turn lane at the intersection can be extended by changing the striping on the roadway. There is also a vertical curve prior to the intersection. It was observed that the queue of cars waiting to turn left at the intersection was long enough that someone approaching this intersection and traveling over the vertical curve may not have an ideal amount of stopping sight distance which can contribute to rear end collisions. Lowering the crest of the vertical curve is another recommendation. Turning lane lengths and tapers will also be considered on the Mountain Parkway leg of this intersection.

There were two other alternates that the Project Team decided not to carry forward. One alternate was closing the ramps at KY 7 and routing the traffic through town. The project team did not think this would be supported by the public and did not want to route additional traffic, including coal trucks, through town. Another alternate was a roundabout at the Mountain Parkway/US 460 intersection. The project team stated that the R / W foot print would probably be too large for this area.

PURPOSE \& NEED: After some discussion the project team agreed that the purpose and need statement should read similar to the following: Needs:

- The ramp(s) at the Mountain Parkway interchange with KY 7 provide access to the parkway for residents, coal trucks, school buses and other traffic in the Salyersville area. The geometry of the ramps at the KY 7 interchange does not meet recommended 30 MPH Design Speed standards for loop ramps.
- The intersection of Mountain Parkway and US 460 has a history of rear-end collisions.
- The Mountain Parkway provides a vital connection between Central Kentucky and many communities and rural areas of Southeastern Kentucky.
Purpose:
- The purpose of this project is to improve the safety, the geometrics, and the connectivity between Central Kentucky and many communities and rural areas of Southeastern Kentucky, and to improve highway performance along this corridor to facilitate Economic Development.

NEXT STEPS: The district agreed to provide planning level, phased cost estimates for the alternates they would like to see move forward.

The meeting was followed by a visit to the site by Central Office Planning staff.

END OF MINUTES

